skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tseng, W_C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Neural speech codecs have revolutionized speech coding, achieving higher compression while preserving audio fidelity. Beyond compression, they have emerged as tokenization strategies, enabling language modeling on speech and driving paradigm shifts across various speech processing tasks. Despite these advancements, their robustness in noisy environments remains underexplored, raising concerns about their generalization to real-world scenarios. In this work, we systematically evaluate neural speech codecs under various noise conditions, revealing non-trivial differences in their robustness. We further examine their linearity properties, uncovering non-linear distortions which partly explain observed variations in robustness. Lastly, we analyze their frequency response to identify factors affecting audio fidelity. Our findings provide critical insights into codec behavior and future codec design, as well as emphasizing the importance of noise robustness for their real-world integration. 
    more » « less
    Free, publicly-accessible full text available May 30, 2026